فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسنده: 

mohammadinezhad Haji mohammad

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    46
تعامل: 
  • بازدید: 

    154
  • دانلود: 

    0
چکیده: 

LIENARD SYSTEM FORMS ONE OF THE IMPORTANT CLASS OF DIFFERENTIAL EQUATIONS WHICH IS CONSIDERED WIDELY IN RECENT YEARS. AN INTERESTING PROBLEM STUDIED ABOUT THIS EQUATIONS IS TO OBTAIN AN UPPER BOUND FOR THE NUMBER OF Limit CYCLE. IN THIS PAPER WE STUDY HOPF BIFURCATION FOR SPECIAL POLYNOMIAL LIENARD SYSTEM AND FIND A MAXIMAL NUMBER OF Limit CYCLE NEAR THE ORIGIN WHICH NAMED HOPF CYCLICITY.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 154

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

SHARIATI H. | MOHAMMADI NEJADEH H.M.

اطلاعات دوره: 
  • سال: 

    2006
  • دوره: 

    17
  • شماره: 

    3
  • صفحات: 

    265-272
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    343
  • دانلود: 

    0
چکیده: 

We consider the class of polynomial ial differential equation x =pn (x, y) +p n+m (x, y)+pn+2m (x, y), y=Qn (x, y)+Qn+m (x, y)+Q n+2m (x, y). For m, n ≥1 where Pi and Qi are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 Limit cycle.      

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 343

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

PENG LINPING | LEI YAZHI

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    39
  • شماره: 

    6
  • صفحات: 

    1223-1248
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    377
  • دانلود: 

    0
چکیده: 

The paper is concerned with the bifurcation of Limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the Poincare disk. Attention goes to the number of Limit cycles produced by the period annulus under perturbations. By using the appropriate Picard-Fuchs equations and studying the geometric properties of two planar curves, we prove that the maximal number of Limit cycles bifurcating from the period annulus under small quadratic perturbations is two.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 377

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

HAKIMI ALIREZA | BINAZADEH TAHRA

اطلاعات دوره: 
  • سال: 

    2012
  • دوره: 

    12
  • شماره: 

    3
  • صفحات: 

    1-6
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    304
  • دانلود: 

    0
چکیده: 

This paper considers the problem of stable Limit cycles generating in a class of uncertain nonlinear systems which leads to stable oscillations in the system’s output. This is a wanted behavior in many practical engineering problems. For this purpose, first the equation of the desirable Limit cycle is achieved according to shape, amplitude and frequency of the required output oscillations. Then, the nonlinear control law is designed such that the phase portrait of the closed-loop system includes this stable Limit cycle. The design of controller is based on the Lyapunov stability theorem which is suitable for stability analysis of the positive Limit sets (the stable Limit cycle is a positive Limit set for the nonlinear dynamicl system). The proposed robust controller consists of two parts: nominal control law and additional term which guarantees the robust performance and vanishing the effect of uncertain terms. Finally, to show the applicability of the proposed method, an inertia pendulum system (with parametric uncertainties in its dynamical equations) is considered and the robust output oscillations are achieved by creating the desirable Limit cycle in the close-loop system.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 304

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    5
تعامل: 
  • بازدید: 

    178
  • دانلود: 

    0
چکیده: 

IN THIS PAPER THE ASYMPTOTIC EXPANSION OF MELNIKOV FUNCTION OF FIRST-ORDER ABOUT A HETEROCLINIC LOOP CONNECTING A CUSP OF ORDER TWO AND A HYPERBOLIC SADDLE FOR A PLANAR NEAR- HAMILTONIAN SYSTEM IS GIVEN. WE FIND THAT AT MOST THREE Limit cycles CAN BE BIFURCATED FROM THE PERIOD ANNULUS, ALSO WE GIVE DIFFERENT DISTRIBUTION OF BIFURCATED Limit cycles.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 178

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

MURSALEEN M.

نشریه: 

FILOMAT

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    31
  • شماره: 

    7
  • صفحات: 

    2103-2108
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    137
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 137

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

Bakhshalizadeh A. | ZANGENEH H.R.Z.

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    5
تعامل: 
  • بازدید: 

    173
  • دانلود: 

    0
چکیده: 

IN THIS PAPER WE FIND AND STUDY TWO CLASSES OF 7TH ORDER COMPLETE HYPERELLIPTIC INTEGRALS OF THE FIRST KIND AND SHOW THAT THE THESE CLASSES ARE CHEBYSHEV AND EXACT BOUNDS FOR THEIR NUMBER OF ZEROS ARE TWO.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 173

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

ALBERTS WILLIAM W.

اطلاعات دوره: 
  • سال: 

    1962
  • دوره: 

    70
  • شماره: 

    3
  • صفحات: 

    263-281
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    134
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 134

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    44
تعامل: 
  • بازدید: 

    118
  • دانلود: 

    0
چکیده: 

THIS REVIEW HAS PRESENTED A ONE-PARAMETER, NON-SMOOTH BIFURCATIONS THAT OCCUR IN VARIETY OF CONTINUOUS-TIME PIECEWISE-SMOOTH DYNAMICAL SYSTEMS. ONLY DISCONTINUITY-INDUCED BIFURCATION (DIB) THAT ARE LOCAL ARE CONSIDERED, THAT IS, BIFURCATIONS INVOLVING EQUILIBRIA OR A SINGLE POINT OF BOUNDARY INTERACTION ALONG A Limit CYCLE FOR FLOWS. IN THIS REVIEW A PROCEDURE TO FIND ALL Limit SETS NEAR BIFURCATING EQUILIBRIA IN A CLASS OF HYBRID SYSTEMS WAS DESCRIBED BY CONTINUOUS, PIECEWISE SMOOTH DIFFERENTIAL EQUATIONS.FOR THIS PURPOSE, THE DYNAMICS NEAR THE BIFURCATING EQUILIBRIUM WAS LOCALLY APPROXIMATED AS A PIECEWISE AFFINE SYSTEM DEFINED ON A CONIC PARTITION OF THE PLANE.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 118

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Akbarian Majid | Pariz Naser

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    4
  • شماره: 

    3
  • صفحات: 

    333-340
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    28
  • دانلود: 

    0
چکیده: 

Lyapunov's theorem is the basic criteria to establish the stability properties of the nonlinear dynamical systems. In this method, it is a necessity to find the positive definite functions with negative definite or negative semi-definite derivative. These functions that named Lyapunov functions, form the core of this criterion. The existence of the Lyapunov functions for asymptotically stable equilibrium points is guaranteed by converse Lyapunov theorems. On the other hand, for the cases where the equilibrium point is stable in the sense of Lyapunov, converse Lyapunov theorems only ensure non-smooth Lyapunov functions. In this paper, it is proved that there exist some autonomous nonlinear systems with stable equilibrium points that despite stability don’t admit convex Lyapunov functions. In addition, it is also shown that there exist some nonlinear systems that despite the fact that they are stable at the origin, but do not admit smooth Lyapunov functions in the form of V(x) or V(t,x) even locally. Finally, a class of non-autonomous dynamical systems with uniform stable equilibrium points, is introduced. It is also proven that this class do not admit any continuous Lyapunov functions in the form of V(x) to establish stability.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 28

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button